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SUMMARY

A two-dimensional 19-velocity (D2Q19) lattice Boltzmann model which satis�es the conservation laws
governing the macroscopic and microscopic mass, momentum and energy with local equilibrium distri-
bution order O(u4) rather than the usual O(u3) has been developed. This model is applied to simulate
the re�ection of shockwaves on the surface of a triangular obstacle. Good qualitative agreement be-
tween the numerical predictions and experimental measurements is obtained. As the model contains the
higher-order terms in the local equilibrium distribution, it performs much better in terms of numerical
accuracy and stability than the earlier 13-velocity models with the local equilibrium distribution accurate
only up to the second order in the velocity u. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last decade, there has been considerable progress in the development of lattice Boltz-
mann (LB) methods as novel alternatives to the traditional numerical methods (�nite element,
boundary element and �nite di�erence) for solving the Navier–Stokes equations [1–3]. LB
models have already found extensive applications in simulating the physical phenomena of
various complexity ranging from �ows in porous media [4], magnetohydrodynamics [5] im-
miscible �uids [6] to turbulence [7, 8].
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As a common connection, it is well-known that the classic �uid dynamics equations such
as Euler, Navier–Stokes and Burnett equations can all be obtained from the Boltzmann equa-
tion by a standard Chapman–Enskog expansion [2] retaining the zero-order, �rst-order and
second-order terms in the series solutions, respectively. Also both numerical simulations and
experimental veri�cations have shown that the Burnett equation perform better and are more
generally applicable than the Navier–Stokes equation giving more accurate solutions for �ows
with a wider range of Kn numbers. This is because the higher-order approximation in deriv-
ing Burnett equation represents more closely the actual physical process of particle collision
and movement. Unfortunately, the solution of the Boltzmann equation is extremely di�cult
and time consuming even in many physically simple situations [4] as the macroscopic �uids
is the average result of Brownian movement of large number of microscopic particles. This
computational di�culty severely restricts the application of the Boltzmann equation to real
world �uid dynamics problems.
In contrast, the LB models solve the BGK-Boltzmann equation [4] by means of simple time

and space discrete numerical methods involving a limited number of particles. This allows
complex �uid dynamics problems found in practice to be solved e�ciently. In a LB model,
the population of particles moves in steps according to �xed set of deterministic rules. In most
cases, these rules are chosen so that quantities such as particle number, momentum and energy
are conserved in each collision. The transformation relation between the population of particles
and macroscopic quantities is extremely simple involving no more than arithmetic calculations.
However, despite the progress made in developing the LB methods and its wide applica-

tions, the most existing lower-order LB models are found to be less successful in simulating
supersonic �ows. Although the simple shockwave-pipe can be reproduced satisfactorily using
these models, simulation of the re�ections of shockwaves on the surface of obstacles has
met with considerable di�culties. Numerical instability and large arti�cial di�usion leading to
unrealistically wide shock front are among the commonly known problems. In order to over-
come these problems, a two-dimensional D2Q19 lattice Boltzmann model is developed in the
present study based on the standard BGK-Boltzmann equation. This LB model strictly satis�es
the conservation laws of mass, momentum and energy in collision process. Macroscopic �uid
dynamic equations can be recovered using the standard Chapman–Enskog expansion retaining
terms in the series solutions up to O(u4). The model is then used to simulate the re�ection
phenomena of shockwaves on the surface of obstacles. The preliminary numerical predic-
tions were found to be consistent with that from the published experiment [9] and numerical
instability problems associated with the lower-order LB models have been overcome.

2. LATTICE BOLTZMANN MODEL

The dynamics of a standard multi-speed LB system is usually represented by the BGK evo-
lution equation for particle density:

fki(r� + cki��t; t + �t)− fki(r�; t)=�ki (1)

with

�ki=
1
�
[f(0)ki (r�; t)− fki(r�; t)]; i=0; 1; 2; : : : ; b; k=1; 2; 3; : : : ; n
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Figure 1. D2Q13 and D2Q19 model (Particle velocity c2i=2c1i ; c3i=3c1i).

where fki is the distribution function of particle density, i is the number of movement directions
of particles, n represents the number of particle speeds, cki� is the speed of the particle
and it has the same modulus on all directions, |cki�|= ck =const for k=1; 2; 3; : : : ; n with
ck0 = 0, � represents co-ordinates index, �t is the discrete time step, �ki is the collision
operator, � is the dimensionless relaxation time coe�cient and f(0)ki is the equilibrium velocity
distribution function. In LB models, the choice of the equilibrium velocity distribution function
is dependent on the discrete grids used. In this study, the hexagonal lattice as shown in
Figure 1 is adopted. At each discrete site the particles will have three speeds for this D2Q19
model instead of only two speeds as in the case for a D2Q13 model. The mass, momentum
and energy relationship criteria are satis�ed through the following constraints that relate the
microscopic particle populations and macroscopic �uid [2, 10]

[
�; �u�;

1
2
�u2 + �e

]T
=




∑
k

∑
i
fki

∑
k

∑
i
fkicki�

1
2
∑
k

∑
i
fkic2k




(2)

In addition, the energy �ux and momentum �ux must also satisfy [2]

(
1
2
�u2 + �e+ P

)
u� =

1
2
∑
k

∑
i
f(0)ki c

2
kcki� (3)

P��� + �u�u� =
∑
k

∑
i
f(0)ki cki�cki� (4)

��� =

{
1; �=�

0; � �=�

where P is the pressure, � is the density of �uid and e is the internal energy of �uid per
unit mass. The Chapman–Enskog expansion can be used to perform asymptotic expansion
of the particle velocity distribution function in the neighbouring domain of local equilibrium
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velocity distribution when the deviation of velocity distribution function fki from its equilib-
rium velocity distribution f(0)ki is very small, which gives

fki =f
(0)
ki + fneqki (5)

fneqki =f(1)ki + f(2)ki + · · ·+ f(n)ki (6)

f(n)ki =O(�(n)) (7)

@(n)f(n)ki =O(�(n+1)) (8)

As the non-equilibrium distribution fneqki has no contribution to density, momentum and energy
[10, 11], i.e.

∑
k

∑
i
f(neq)ki =0 (9)

∑
k

∑
i
f(neq)ki cki� =0 (10)

∑
k

∑
i
f(neq)ki c2k =0 (11)

the following conservation equations can be obtained from (2) using (9)–(11):

[
�; �u�;

1
2
�u2 + �e

]T
=




∑
k

∑
i
f(0)ki

∑
k

∑
i
f(0)ki cki�

1
2
∑
k

∑
i
f(0)ki c

2
k




(12)

According to Reference [12], the following Maxwell distribution is adopted for the equilibrium
velocity distribution function f(0)ki :

f(0)ki =Wk�
(
1− 2Ecki�u� + 2E2cki�cki�u�u� + Eu2 − 2E2cki�u�u2

−4
3
E3cki�cki�cki�u�u�u�

)
(13)

where Wk and E are constants that can be determined by the above conservation criteria.
Substituting equilibrium distribution function (13) into criteria (3), (4) and (12) the weight
Wk and coe�cient E are obtained as shown in Table I.
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Table I. Coe�cients in the equilibrium distribution function.

D2Q13 D2Q19

W0 = 1 +
2e2(D+2)−5Dec21

2Dc41
W0 = 1− 4e3(D+4)(D+2)+49eD2c41−28e2Dc21(D+2)

18D2c61

W1 =
8Dec21−4e2(D+2)

3bDc41
W1 =

2e3(D+4)(D+2)+18eD2c41−13e2Dc21(D+2)
6bD2c61

W2 =
2e2(D+2)−Dec21

6bDc41
W2 =

20e2Dc21(D+2)−4e3(D+4)(D+2)−9eD2c41
30bD2c61

W3 =
2e3(D+4)(D+2)+2eD2c41−5e2Dc21(D+2)

90bD2c61

Coe�cients in both models: E=−D=4e; P=(2=D)�e; D=2; b=6; c3 = 3c1; c2 = 2c1, D is
the number of spatial dimensions (2 in this case), b is the number of lattice direction (6 for the
hexagonal lattice), W0 and Wi are, respectively, the weights of stationary and moving particles.

3. FLUID DYNAMIC EQUATION

Macroscopically, the kinetic and thermodynamic behaviour of the �uid are governed by the
�uid dynamic equations. Therefore, for an LB model to correctly represent the macroscopic
�uid dynamics, it must be ensured that the �uid dynamic equations can be recovered from
the LB models. Performing the usual Taylor expansion of the �rst term on the left-hand side
of Equation (1) about time �t to the �rst and second order gives

�t :
@fki
@t
+ cki�

@fki
@r�

=− 1
��t
[fki − f(0)ki ] (14)

�t2 :
@fki
@t
+ cki�

@fki
@r�

+
�t
2
cki�cki�

@2fki
@r�@r�

+ �tcki�
@2fik
@t@r�

+
�t
2
@2fki
@t2

=− 1
��t
[fki − f(0)ki ] (15)

Substituting the Chapman–Enskog expansion of the velocity distribution function Equations
(5)–(8) into the above equations gives

� :
@f(0)ki

@t
+ cki�

@f(0)ki

@r�
=− 1

��t
fneqki (16)

�2 :
@f(0)ki

@t
+ cki�

@f(0)ki

@r�
+

(
1− 1

2�

)(
@fneqki

@t
+ cki�

@fneqki

@r�

)
=− 1

��t
fneqki (17)

Performing summation on Equation (16) and using Equation (12), the following continuous
equation can be obtained:

@�
@t
+
@(�u�)
@r�

=0 (18)
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Similarly, multiplying the particle velocity cki� with Equation (17), and then performing sum-
mation on it making use of Equations (12) and (16), the momentum equation is obtained
as

�
@u�
@t
+ �u�

@u�
@r�

=−@P
@r�
+
@F�
@r�

(19)

in which

F� = 	
@�u�
@r�

+ �t
(
�− 1

2

)
@P
@t
+ �t

(
�− 1

2

)
@�u�u�
@t

	=
2e�t
D

(
�− 1

2

)

where 	 is the coe�cient of kinematical viscosity and F� is viscous stress. Compared with
the Navier–Stokes viscous transport term, the viscous stress F� in Equation (19) has extra
unsteady pressure and momentum �ux terms. The unsteady term may be neglected for small
Mach numbers but the momentum �ux term must be retained.
Multiply Equation (17) with the particle velocity c2k and perform summation, and get the

following energy equation:

@
@t

(
1
2
�u2� + �e

)
+
@
@r�

((
1
2
�u2� + �e+ P

)
u�

)
=
D+ 2
D

�t�e
(
�− 1

2

)
@2e
@r2�

+O(�3) (20)

where thermal di�usion coe�cient


=
D+ 2
D

�t�e
(
�− 1

2

)

4. NUMERICAL EXPERIMENT

In this numerical experiment, we intend to investigate and compare the stability properties
and applicability of the lattice Boltzmann models described above. The example chosen is a
standard test case concerning with the re�ections of shockwaves on the surface of a triangular
obstacle [9]. Figure 2 presents two sketches for �ow �eld computation. The numbers in the
diagram indicate the numbers of discrete lattice on each side of the obstacle. The zone covered
by 250× 1040 grids on the left-hand side of Figure 2(a) is the high-pressure area. The initial
conditions are set as (�L; u�; eL)= (25:0; 0:0; 0:40). The rest is the low-pressure area, and the
initial conditions are set as (�R; u�; eR)= (12:0; 0:0; 0:40). The relaxation time coe�cient is
taken as �=0:6. Non-slip bounce-back boundary conditions [13] are imposed on the four-side
circumference boundaries, and on the sloping side in the bottom part. Figure 3(a) gives the
numerical result obtained using the D2Q13 model with the integration time being 650. The
propagation of shockwaves and their re�ections on the sloping plane can be clearly seen in
Figure 3. The predicted density contours are also consistent with those from the experiment [9].
Figure 2(b) gives the conditions for the second �ow �eld computation. Now the high-pressure
area on the left-hand side of the diagram is covered by 200×500 grid and the initial conditions
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Figure 2. Structural illustration for �ow �eld computation.

(a)                                                                                             (b)

Figure 3. (a) Calculated density contours using D2Q13 (values ranging from 14 away from the tip to
16 near the tip). (b) Experimental observation [9].

there are set as (�L; u�; eL)= (3:0�R ; 0:0; 0:65). The rest is the low-pressure area where the
initial conditions are set as (�R ; u�; eR)= (1:0; 0:0; 0:65). The relaxation time coe�cient is taken
as �=0:6. Non-slip bounce-back boundary conditions are again implemented for the solid and
side boundaries while on the right-hand side open boundary the zero gradient conditions are
imposed as

d�
dx
=0;

dVx
dx

=0;
dVy
dx

=0

Figure 4 shows the computation result with the D2Q19 model for the shockwave re�ections,
and it has clearly demonstrated the propagation of shockwaves and their re�ections on the
folded angle. The numerical result is also consistent with experiment result [9]. Figure 5(a)
shows the pressure distribution of �ow �eld along x-axis at the dashed line positions Mv of
Figure 2(b). The property of rarefaction wave propagation and contact discontinuity can be
seen clearly in the diagram. Figure 5(b) shows the velocity distribution of �ow �eld along the
same line. The abrupt jump of velocity on the sloping plane of the triangle, a phenomenon
occurring also at the contraction section of Laval nozzle, is predicted. This abrupt jump of
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Figure 4. Comparison of the computation result of D2Q19 model for shockwave re�ections
with experiment result [9], where TS is the integration time step. The solid lines in the

�gure are the pressure distribution.
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Figure 5. (a) Pressure distribution. (b) The distribution of Mach-number M =Vx=a of the �ow �eld
along the dashed line Mv (Vx is the �ow velocity along axis X , and a is sonic speed, and a2 = 2e=D).

velocity can be easily explained by using the one-dimensional dynamic equation in a variable
cross-section tunnel which is both isoentropic and steady:

(M 2 − 1)dV
V
=
dA
A

(21)

The equation shows that if M 2−1¡0, i.e. M¡1 and the �ow velocity is subsonic, dV=V and
dA=A must have opposite signs. Therefore, the gradual decrease in cross-section will result in
the gradual increase in gas �ow velocity. At the location of folded angle, dA=A=0 and the �ow
velocity reaches the critical state, i.e. M =1. An almost instantaneous rapid acceleration of the
�ow beyond the folded angle will take place before arriving at the supersonic status. Following
this rapid acceleration, the �ow enters the pipe with constant cross-section (dA=A=0) with
(M 2 − 1)dV=V¡0. This means that the terms dV=V and M 2 − 1 are always of the opposite
signs, resulting in the gradually attenuation of the supersonic �ow.
Figure 6 shows that the relationship between the contact discontinuity of wave front and

the dimensionless relaxation time �. With the increase of the relaxation time �, the contact
discontinuity is seen to move from strong to weak.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:1137–1146



SIMULATION OF SHOCKWAVE PROPAGATION 1145

0.6 0.7 0.8 0.9 1
0.6

0.7

0.8

0.9

290=TS

30.1=

65.0=

P

X

�

�

Figure 6. Pressure distributions for the integration time steps 290, the
dimensionless relaxation times �=0:65 and 1.30.

0 0.2 0.4 0.6 0.8 1
0.6

0.8

1

1.2

1.4

1.6

X

P

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

X

M

 (a)      (b) 

Figure 7. (a) and (b) show the distributions of pressure and the Mach-number, respectively,
for the integration time steps 290.

As the equilibrium distribution is given by a truncated power series in the local �uid
velocity, numerical accuracy and stability of LB model will be a�ected by the truncated
error of the equilibrium distribution. The second numerical example is implemented with the
same initial and boundary conditions by using the equilibrium distribution of second order in
velocity u:

f(0)ki =Wk�(1− 2Ecki�u� + 2E2cki�cki�u�u� + Eu2)

The numerical results (Figure 7) for the integration time steps 275 appears non-stability and
over�ow error of �oating point of computing data at turning corner. The breaking section of
distribution of pressure and Mach number is the region of over�ow error of �oating point
as shown in Figure 7. Using same computing conditions, the equilibrium distribution of third
order in u for D2Q19 model can give good numerical results as shown in Figure 5.
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5. CONCLUSION

The two-dimensional D2Q13 and D2Q19 lattice Boltzmann models are established in this
study by relationship criteria between the microscopic particle populations and macroscopic
�uid. Macroscopic �uid dynamic equations can be derived from the models. The numerical
stability and accuracy are guaranteed further by using the equilibrium distribution of third
order in u. The good results have been got from the numerical simulation of the re�ection
phenomena of shockwaves on the surface of obstacles with this model. Thus the applicability
of the lattice Boltzmann model is veri�ed in both theory and experiment.
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